NOTATION

X, z, transverse and longitudinal coordinates; vy, T, undisturbed velocity and temperature profiles;
¢, 6, amplitudes of disturbances of stream function and temperature; A, decrement; k, wave number.
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HYDRODYNAMIC STABILITY OF CONVECTIVE FLOW OF
A NON-NEWTONIAN FLUID IN A VERTICAL LAYER

I. G. Semakin UDC 536.25:532,135

Steady convective non-Newtonian fluid flow and its stability under small perturbations are inves-
tigated,

We wish to analyze the free thermal convection of a non-Newtonian fluid in an infinite-plane vertical
channel. We use the rheological equation

Ty=—8up+n(l+al)" ey 1)

Transition to a Newtonian fluid takes place as a =~ 0 or n —~ 1. Inthe limit of large @ the Ostwald
—Deville model is obtained from (1). Unlike the power-law model, Eq. (1) gives a finite initial viscosity.

It has been shown [1]that Eq. (1) well describes the rheological properties of polymer solutions ina
definite concentration interval. The authors of [1] discuss pseudoplastic media withn — 1 = —m < 0,

We now investigate plane convective motion homogeneous along the z axis. We place the coordinate
axes sothat the y axis is directed upward along the centerline of the channel and the x axis is perpendicular
to the walls. The wall coordinates are x = +h, The walls are maintained at constant temperatures: T (—h) =
8y; T(h) =—B8.

We adopt the following reference units: distance h; time h%o/n; velocity pr®0h2/n; temperature @;
pressure pg3®sh. The system of dimensionless free-convection equations in projections onto the x and y axes
has the form

dv dv du,, ap oH  0Ov o0H [ v, du ) ] '
X= 16 s ppy e )= 9PV HAg, 22 B0 v );
a r(vx ox o dy ) ax +[ ° ax  Ox dy ( dy + ox @
duy f Ov, . Ov op 0H Ov, dv 0H  dv
% | Grlo, Ly, D)o %P A SNINUCI RS LA iy 3
a r(v g v 0y> ay+ % ox ( dy 0x)+ dy  dy ]+ @)
9T | GroyT = PrIAT, @)
ot
or, 4 du, _ 0; )
0x Oy
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Here Gr = p’gf04h’/n? and Pr =1/ (xp) are the Grashof and Prandtl numbers defined with respect to the initial
viscosity 7.

We find the velocity aund temperature distributions for steady plane-parallel convective flow. We seek a
solution of the system (2)-(6) with the structure

v, =0; v, =05(0) T=To(xx p=py(y). (N
Taking account of (7), we obtain from the system
dp, d | ~1 du, [\ dy &T,
9 1 Yo 0 = A; Sl U, Ol
dy  dx ( Ta ) dx ] +T e @)

where A is variable-separation constant, The solution must satisfy the boundary conditions and flow closure
condition
1’0:0; Tozi'l at x=$1y (9)

1

j Up (%) dx = 0. 10)

—1

From expression (8) and the boundary conditions for T we obtain the linear temperature profile

Ty = —x. (1)
The flow closure conditions imply that A = 0, Then for the velocity we obiain the equation
d ~| duy |\*! dy
_ 1 a —0_ ] = X.
dx [( + l dx ) dx ] az)

We solve Eq. (12) with the appropriate boundary conditions by an iterative procedure. We take as the initial
approximation the solution obtained for this problem in the case of a power-law rheological model [2].

Figure 1A gives the dimensionless velocity profiles for n = 0.8 and various values of 2 in one half of the
channel cross section, For ¢ = 0 we have the familiar velocity profile for Newtonian flow [3], Also given in
this figure are the distributions of the "apparent viscosity" H, for the same values of the parameter a. As the
latter is increased the average viscosity in the layer decreases. Consequently, the flow intensity increases.
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Fig. 2. Lower parts of stability neutral curves: Gr!/?versus dimen-
sionless wave number k for Pr =1, 1) n=0,7, ¢ =100; 2) 0.7, 10; 3)
0.7, 1; 4) @ = 0, arbitraryn; 5)n=1.2, a =1; 6) 1.2, 10; 7) 1.2, 100,

Fig. 3. Critical Grashof number Gr* versus dimensionless parameter
a, both variables in logarithmic scale, for Pr =1, 1) n = 0.6; 2) 0.7; 3)
0.,8; 4) 0.9; 5)1.1; 6)1.2; 7) 1.6,

On the other hand, the nonuniformity of the viscosity distributed is heightened. With increasing aa sharp
maximum occurs at the point corresponding to maximum velocity; in the case of the power-law model (¢ —~
) a well-known singularity occurs at this point.

The analogous distributions for the dilatant case n = 1,2 are given in Fig. 1B. Here, by contrast, the
average viscosity in the layer increases with increasing ¢, and the intensity of the motion subsides.

We also analyze the stability of the resulting stationary flow under small perturbations: ¥'=7v} + Vip=
pg+p's T=Ty+T'. The primed variables denote small perturbations. The variables are substituted in this
form into the system (2)~(6). Then the equations are linearized with respect to the small perturbations. We
introduce the stream function vy = —8y/9y; v}', = 8y/dx. We consider normal perturbations of the form

¥ = D (x)exp (thy — At); T' = O (x)exp(iky — Al). 13)

Here & and ® are amplitudes, k is the wave number, and A is the complex decay rate (A = Ay +1iAj). Sub-
stituting (13) into the system of perturbation equations, we obfain for the amplitude equations

M@ — k*D) — Gr yyik (" — k*0) + Grogik® + (A" 4 a(n—1) A" %- ) (@ + k) —
X
—2 (A"" —a(n—1) A2 %"—“—) B "+ 2RE* + 2(L + R)®” + fx— (L + R(FD + D)+ 6 =0; 14
X
Pr"(@”—kz(-))—l—k(-)——ik Gr(v,0 — ®To) = 0. (15)
du, |

; R== (n— 1) (A%

Here we use the notation A=1+a { ' du,

; L=2 —:_x‘ (A""). The prime indicates

differentiation with respect to x. The followmg boundary condltlons hold at rigid, perfectly heat-conducting
channel walls:

O=P =0=0 at x=41. (16)

T o determine the behavior of the perturbations we need to investigate the spectrum of eigenvalues of the
boundary-value problem. The system (14)-(15) with the boundary conditions (16) is integrated by the Runge
— Kutta — Merson method with orthogonalization in each integration step. The details of this method are given
in H1.
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An investigation of the analogous problem for a Newtonian fluid [3] has revealed two instability mech~
anisms: hydrodynamic and thermal. It is shown that the thermal instability arises and presents the greatest
risk for large values of the Prandtl number; also, it has a wave nature. The objective of the present study
is to isolate only the hydrodynamic instability branch for moderate values of the Prandt]l number. Points of
monotonic instability along the neutral curve correspond to values of Ay = Aj = 0,

Figure 2 shows the neutral curves for Pr =1, n=0,7and n =1,2, and various values of the parameter
2. Inthe case of pseudoplastic flow (n = 0,7) the natural curve drops lower as a is increased, i.e., desta-
bilization takes place. In addition, the neutral curve changes shape, becoming flatter in the lower part. The
critical wave number does not shift appreciably; its value remains around 1.3 or 1.4,

In the case of a dilatant fluid (n = 1.2), on the other hand, the critical Grashof number increases with
the value of a.

The minimum Grashof number Gr* determines the stability threshold of steady plane-parallel flow, and
its corresponding wave number determines the wavelength of the most dangerous perturbations, Curves of
Gr* as a function of the parameter a for various values of n are given in logarithmic scale in Fig. 3. Asthe
curves indicate, increasing a causes Gr* to decrease for n <1 and to increasefor n >1, As a —= Othe value
of Gr* tends to 495 for any value of n, i.e., to the stability threshold for Newtonian fluid flow. With an in-
crease in a the Gr* (@) curves depart from a log~linear dependence, i.e., the relationship between Gr* and
% goes over to a power law: Gr* ~ @M, For 0.8 = n = 1 the following asymptotic law holds: Gr* ~ g2®1),

As mentioned above, for large values of a the transition eventually takes place to the power-law model.
In this case the Grashof number Gref defined with respect to the "effective" viscosity (see [6]) is the most in~
dicative criterion. The relationship befween Gref and the Grashof number Gr defined with respect to the ini-
tial viscosity is as follows: Gref = (24a)’Gr, where a(@, a) is the average dimensionless velocity over half
the channel cross section, A recomputation of the critical values of Gref from the data of Fig. 3 yields for
large @ results that are consistent with those obtained earlier [6] for the power~law model in the effective~
viscosity approximation,

The author is indebted to G, Z. Gershuni for general interest and discussion,

NOTATION

Tij, e”, internal-stress and strain-rate tensors; 5, consistency and initial viscosity; a, parameter of
rheological equation; n, rheological power exponent; h, half~width of channel; ©, wall temperature; p, fluid
density; g, free-fall acceleration; B, temperature coefficient of volume expansion; x, thermal diffusivity;
¥, velocity vector; T, temperature; t, time; Gr, Grashof number; Pr, Prandtl number; y, stream function;
k, wave number; A, complex decay rate; &, amplitude of stream function; ®, temperature perturbation am-
plitude function; a, dimensionless counterpart of rheological parameter a; P, pressure.
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